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Abstract. State preparation via conditional output measurement on a beam splitter is studied, assuming
the signal mode is mixed with a mode prepared in a Fock state and photon numbers are measured in
one of the output channels. It is shown that the mode in the other output channel is prepared in either a
photon-subtracted or a photon-added Jacobi polynomial state, depending upon the difference between the
number of photons in the input Fock state and the number of photons in the output Fock state onto which
it is projected. The properties of the conditional output states are studied for coherent and squeezed input
states, and the probabilities of generating the states are calculated. Relations to other states, such as near-
photon-number states and squeezed-state-excitations, are given and proposals are made for generating them
by combining the scheme with others. Finally, effects of realistic photocounting and Fock-state preparation
are discussed.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, sub-Poissonian states; operational def-
initions of the phase of the field; phase measurements – 03.65.Bz Foundations, theory of measurement,
miscellanous theories

1 Introduction

Over the last years numerous workers have studied vari-
ous nonclassical states of radiation and proposed schemes
for producing them. Particular interest has been devoted,
e.g., to Fock states (for a review, see [1]) and states de-
rived from Fock states by coherently displacing and/or
squeezing them (see [2] and references therein), superpo-
sitions of mesoscopically distinguishable states, such as
Schrödinger-cat-like states (for a review, see [3]), near-
photon-number states (also called crescent states) [4–9],
binomial states [10], inverse binomial states [11], squeezed-
state excitations [12], and SU(2) and SU(1,1) minimum-
uncertainty states [7,13,14]. Another interesting class of
nonclassical states that have been a subject of increasing
interest are photon-added and photon-subtracted states
that are obtained by repeated application of photon cre-
ation or destruction operators, respectively, on a given
state [15–22]. Similarly, states obtained by the repeated
application of the inverse boson operators have also been
considered [23].

Designing of schemes for generating specific quantum
states and realization of the schemes in the laboratory
have been one of the most exciting challenges to the re-
searchers. A promising method of quantum state engineer-
ing has been conditional measurement, e.g., generation of
a desired state by state reduction in one of two entangled
quantum objects owing to an appropriate measurement on

a e-mail: dakna@tpi.uni-jena.de

the other object. Typical examples that have been consid-
ered for nonclassical state generation via conditional mea-
surements are the interfering fields in the output channels
of a beam splitter [17,19,20,24,25], waves produced by
parametric amplifiers [5,9,13,25,26] and degenerate four-
wave mixers [5,27], and systems of the Jaynes-Cummings
type in cavity QED [28]. Further, state reduction via con-
tinuous measurement has also been considered [29].

In this paper we study the class of states generated
by conditional output measurement on a beam splitter in
the case when an input mode prepared in some quantum
state and another input mode prepared in an n photon
Fock state are mixed and in one of the output channels of
the beam splitter a photon-number measurement yields
m photons. We show that the conditional output states
are photon-subtracted (n <m) or photon-added (n>m)
Jacobi polynomial states, i.e., states that are obtained
by (|n − m| times) repeated application of either the
photon destruction operator or the photon creation op-
erator, respectively, to Jacobi polynomial states. It is
worth noting that the scheme can be used to generate
photon-subtracted and photon-added Jacobi polynomial
states for various classes of input quantum states, such
as thermal states, coherent states, squeezed states and
displaced photon-number states. In particular, for n = 0
and m = 0, respectively, ordinary photon-subtracted and
photon-added states [15–22] are observed.

In order to illustrate the nonclassical properties of
photon-subtracted and photon-added Jacobi polynomial
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states, we study them for coherent input states in more de-
tail. We analyze the states in terms of the photon-number
and quadrature-component distributions and the Wigner
and Husimi functions, and we calculate the probability of
producing them. Further, we briefly address the case of
squeezed vacuum input. It is worth noting that in this
case the produced photon-subtracted and photon-added
Jacobi polynomial states – similarly to ordinary photon-
subtracted and photon-added squeezed vacuum states [19,
22] – are examples of classes of Schrödinger-cat-like states.

We further study the relation of the conditional out-
put states to other classes of nonclassical states. In par-
ticular we show that near-photon-number states [4–9] and
squeezed-state excitations [12] can be generated by pho-
ton adding and subsequent coherent displacement and/or
squeezing. It also turns out that photon-subtracted and
photon-added Jacobi polynomial coherent states are finite
superpositions of ordinary photon-added coherent states,
which for themselves are finite superpositions of displaced
Fock states [15]. Similarly, photon-subtracted and photon-
added squeezed vacuum states can be regarded as two dif-
ferent finite superpositions of squeezed number states.

This paper is organized as follows. Section 2 presents
the basic scheme for generation of photon-subtracted and
photon-added Jacobi polynomial states. The properties
of the states are studied in Sections 3 – 5, with special
emphasis on coherent input states (Sect. 4) and squeezed
vacuum input states (Sect. 5). Relations to other states are
given in Section 6. In Section 7 effects of nonperfect prepa-
ration and measurement of photon-number states are
addressed. Finally, a summary and concluding remarks
are given in Section 8.

2 Scheme of conditional measurement

Splitting and mixing optical fields on beam splitters are
basic manipulations in classical as well as in quantum op-
tics. The input-output relations of a lossless beam splitter
are well known to obey the SU(2) Lie algebra [30]. In the
Heisenberg picture, the photon destruction operators of
the outgoing modes, b̂k (k=1, 2), are obtained from those
of the incoming modes, âk, as

b̂k =
2∑

k′=1

Tk,k′ âk′ , (1)

where

(Tk,k′) = eiϕ0

(
cos θ eiϕT sin θ eiϕR

− sin θ e−iϕR cos θ e−iϕT

)
(2)

is a SU(2) matrix whose elements are given by the complex
transmittance T and reflectance R of the beam splitter,

T = cos θ eiϕT , R = sin θ eiϕR . (3)

In the Schrödinger picture, the density operator is unitar-
ily transformed, whereas the photonic operators are left
unchanged. In this case the output-state density operator

%̂out can be related to the input-state density operator %̂in
as

%̂out = V̂ †%̂inV̂ , (4)

where V̂ can be given by [30]

V̂ = e−i(ϕT−ϕR)L̂3 e−2iθL̂2 e−i(ϕT+ϕR)L̂3 , (5)

with

L̂2 = 1
2i(â

†
1â2 − â

†
2â1), L̂3 = 1

2 (â†1â1 − â
†
2â2). (6)

Note that ϕ0 is a global phase factor, which may be omit-
ted without loss of generality, ϕ0 = 0. Applying elemen-
tary parameter-differentiation techniques [31], we can de-
rive the operator identity

e−2iθL̂2 = etan θ â†2â1 e2 ln cos θ L̂3 e− tan θ â†1â2 , (7)

which (together with Eq. (3)) enables us to rewrite V̂ †,
equation (5), as

V̂ † = T n̂1 e−R
∗â†2â1 eRâ

†
1â2 T−n̂2 , (8)

where n̂k = â†kâk.

BS

%̂in1 %̂out1

jni

D

Fig. 1. Scheme of the experimental setup. When a signal mode
prepared in a state %̂in1 is mixed (beam splitter BS) with an-
other input mode prepared in a Fock state |n〉 and in one of the
output channels of the beam splitter m photons are recorded
(detector D), then the quantum state %̂out1 of the mode in the
other output channel “collapses” to either a PSJP state (n<
m) or a PAJP state (n>m).

An outline of the experimental setup is depicted in
Figure 1. A field mode prepared in a state described by
the density operator %̂in1 is mixed at a beam splitter with
another mode prepared in a Fock state |n〉. The input-
state density operator can then be written as

%̂in(n) = %̂in1 ⊗ |n〉2 2〈n|. (9)
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Using equations (4, 8, 9), after some algebra the output-
state density operator %̂out≡ %̂out(n) can be given by

%̂out(n) =
1

|T |2n

∞∑
l=0

∞∑
m=0

n∑
k=0

n∑
j=0

(R∗)m+jRl+k

×
(−1)l+m
√
k!j!m!l!

√(
n

k

)(
n

j

)(
n−k+m

m

)(
n−j+l

l

)
×T n̂1 âm1 (â†1)k %̂in1â

j
1(â†1)l(T ∗)n̂1⊗|n−k+m〉2 2〈n−j+l|.

(10)

From equation (10) we see that the output modes are
highly correlated to each other in general. When the pho-
ton number of the mode in the second output channel is
measured and m photons are detected, then the mode in
the first output channel is prepared in a quantum state
whose density operator %̂out1(n,m) reads as

%̂out1(n,m) =
2〈m|%̂out(n)|m〉2

Tr1{2〈m|%̂out(n)|m〉2}
· (11)

The probability of such an event is given by

P (n,m) = Tr1{2〈m|%̂out(n)|m〉2}

=
|R|−2νn!

|T |2mm!

n∑
j=µ

n∑
k=µ

(−|R|2)(j+k)

(
m

j−ν

)(
m

k−ν

)

×
∞∑
n=δ

n!|T |2n

(n+ν)!

(
n+j

j

)(
n+k

k

)
〈n|%̂in1|n〉, (12)

where the abbreviations

ν = n−m, µ = max(0, ν), δ = µ− ν (13)

have been used. Let us now assume that the mode in the
first input channel is prepared in a mixed state

%̂in1 =
∑
Φ

p̃Φ |Φ〉〈Φ| (14)

(
∑
Φ p̃Φ = 1, 0 ≤ p̃Φ ≤ 1). Combining equations (10) and

(11) and using equation (14), we find that the mode in the
first output channel is prepared in a state

%̂out1(n,m) =
∑
Φ

p̃Φ|Ψn,m〉
〈
Ψn,m|, (15)

where

|Ψn,m〉 = N−1/2
n,m

n∑
k=µ

(−|R|2)k

(k−ν)!

(
n

k

)
âk−ν1 (â†1)kT n̂1 |Φ〉,

(16)
Nn,m being the normalization constant,

Nn,m =
n∑
k=µ

n∑
j=µ

(−|R|2)k+j

(k−ν)!(j−ν)!

(
n

k

)(
n

j

)
×〈Φ|(T ∗)n̂1 âj1(â†1)j−ν âk−ν1 (â†1)kT n̂1 |Φ〉. (17)

3 Photon-subtracted and photon-added
Jacobi polynomial states

The properties of the conditional output state essentially
depend on whether photons are effectively subtracted (n
<m) or added (n>m). To be more specific, from equation
(16) we obtain for n<m the output state

|Ψn,m〉=N
−1/2
n,m

n∑
k=0

(−|R|2)k

(k+|ν|)!

(
n

k

)
â|ν|âk(â†)kT n̂|Φ〉

=N−1/2
n,m â|ν|

{
n∑
k=0

(−|R|2)kk!

(k+|ν|)!

(
n

k

)(
n̂+k

k

)}
T n̂|Φ〉, (18)

where the notation

âk(â†)k = (n̂+ 1)(n̂+ 2) · · · (n̂+ k) = k!

(
n̂+k

k

)
(19)

has been introduced (n̂ ≡ n̂1). For n > m we derive (on
using the relation n̂(â†)l = (â†)l (n̂+ l))

|Ψn,m〉 =
n!(−|R|2)ν

m!N 1/2
n,m

×
m∑
k=0

(−|R|2)k

(k+ν)!

(
m

k

)
âk(â†)k(â†)νT n̂|Φ〉,

=
(−|R|2)νn!

m!N 1/2
n,m

(â†)ν

×

{
m∑
k=0

(−|R|2)kk!

(k+ν)!

(
m

k

)(
n̂+ν+k

k

)}
T n̂|Φ〉. (20)

From equations (18) and (20) it can be shown (Appendix
A) that the conditional output state is of the form

|Ψn,m〉 ∼


â|ν| P

(|ν|,n̂−m)
n (2|T |2−1)T n̂|Φ〉 for ν<0,

(â†)νP
(ν,n̂−m)
m (2|T |2−1)T n̂|Φ〉 for ν>0,

(21)

where P
(α,β)
l (z) is the Jacobi polynomial. The following

procedure is seen to yield the conditional output states
from a chosen input state |Φ〉=

∑∞
k=0 ck|k〉. (i) Replace

the Fock-expansion coefficients ck with c′k ∼ P
(|ν|,k−m)
n−µ

(2|T |2− 1)T kck to obtain a state |Φ′〉. (ii) Subtract pho-
tons from the state |Φ′〉 by repeated application of the
photon-destruction operator to it or add photons to state
|Φ′〉 by repeated application of the photon-creation oper-
ator to it. In what follows we will refer to the states |Φ′〉
as Jacobi polynomial (JP) states (in analogy to Hermite
polynomial and Laguerre polynomial states [32]). Note
that for typical classes of states the input state |Φ〉 and the
state |Ψ〉 ∼ T n̂|Φ〉 belong to the same class of states [22].
We see that the conditional output states |Ψn,m〉 produced
in the scheme can be regarded as photon-subtracted Ja-
cobi polynomial (PSJP) states (n<m) and photon-added
Jacobi polynomial (PAJP) states (n > m). It should be
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pointed out that the PSJP states and the PAJP states
are essentially different from each other in general, be-
cause of [â, â†] 6=0. Clearly, when the input state is a Fock
state, |Φ〉= |k〉, then the conditional output states are the
Fock states |k+n−m〉. Let us mention that when m=n
(i.e., ν= 0), then

|Ψn,n〉 = N−1/2
n,n P(0,n̂−n)

n (2|T |2−1)T n̂|Φ〉 . (22)

4 PSJP and PAJP coherent states

To treat the states in a unified way, let us return to equa-
tion (16) and first consider Glauber coherent input states

|Φ〉 ≡ |β〉 = e−|β|
2/2

∞∑
k=0

βk
√
k!
|k〉, (23)

with β= |β|eiϕβ . Equation (16) then reads

|Ψn,m〉 =
1√
N ′n,m

n∑
k=µ

(−|R|2)k

(k − ν)!

(
n

k

)
âk−ν(â†)k|β′〉, (24)

where β′=Tβ andN ′n,m=e|β
′R|2Nn,m. Applying standard

operator ordering techniques [33], we may write

âm(â†)n =

min{m,n}∑
l=0

(
m

l

)
n!

(n− l)!
(â†)n−lâm−l, (25)

and hence

|Ψn,m〉 =
β′
−ν√
N ′n,m

n∑
k=µ

(−|R|2)k
(
n

k

)

×
k∑
l=µ

1

(k − ν)!

(
k

l

)
(β′â†)l|β′〉, (26)

from which the Fock-state expansion of |Ψn,m〉 can easily
be obtained to be

|Ψn,m〉 =
e−|β

′|2/2√
N ′n,m

n∑
k=µ

(−|R|2)k
(
n

k

)

×
k∑
l=µ

(
k

l

)
β′

(l−ν)

(l − ν)!

∞∑
p=0

(β′)p

p!

√
(p+ l)! |p+ l〉 (27)

(for the photon-number statistics, see Appendix B). Using
the identities [34]

n∑
l=0

xl

Γ (l + ν)

(
n

l

)
=

n!

Γ (n+ ν)
Lν−1
n (−x) (28)

and

n∑
l=0

tl

Γ (α+l+1)

Lαl (x)

(n−l)!
=

(1 + t)nLαn [tx/(1+t)]

Γ (α+n+1)
(29)

(Lαn(z) is the associated (or generalized) Laguerre polyno-
mial [34]), we may give equation (26) in the more compact
form of

|Ψn,m〉 =
|T |2nn!

β′ν
√
N ′n,m

[
−|R|2/|T |2

]µ
(n+ δ)!

× L
|ν|
n−µ

(
|R|2

|T |2
β′â†

)
(β′â†)µ|β′〉. (30)

In a similar way it follows that

N ′n,m =
1

|β′|2ν

n∑
k=µ

n∑
j=µ

(−|R|2)k+j

(
n

k

)(
n

j

)

×
k∑
l=µ

j∑
l′=µ

(
k

l

)(
j

l′

)
β′
l
(β′∗)l

′

χ
(1)
l′,l(β

′)

(l − ν))!(l′ − ν)!
, (31)

where

χ
(1)
l,k (α) =

{
k!αl−kLl−kk (−|α|2) for l ≥ k,

l!(α∗)k−lLk−ll (−|α|2) for l < k.
(32)

From equations (26) or (30) we find that PSJP and PAJP
coherent states are finite superpositions of photon-added
coherent states. In particular for n<m equation (30) re-
duces to

|Ψn,m〉 ∼ L|ν|n

(
|R|2

|T |2
β′â†

)
|β′〉, (33)

from which we see that when |β′|�1 and γ=(|R|2/|T |2)β′

finite, then the PSJP state |Ψn,m〉 is (approximately) a
superposition of n Fock states, because of |β′〉≈ |0〉.

The probability of producing PSJP and PAJP coherent
states can be obtained from equation (12). After some
calculation we derive (Appendix C)

P (n,m) = e−|R|
2|β2| |R|

−2νn!

|T |2mm!

×
n∑
k=µ

n∑
j=µ

(−|R|2)k+j

(
m

k−ν

)(
m

j−ν

)
χ

(2)
k,j(β

′, ν), (34)

where

χ
(2)
k,j(α, ν) =

k∑
l=0

(
k

l

)
(j − ν)!)

l!j!
L
l+|ν|
j−ν (−|α|2)|α|2l for ν ≥ 0,

k∑
l=0

(
k

l

)
(j + l)!)

l!j!
L
−l+|ν|
j+l (−|α|2)|α|2|ν| for ν < 0.

(35)

In Figure 2 examples of P (n,m) are plotted for two abso-
lute values of the beam-splitter transmittance. We see that
P (n,m) is an oscillating function of the absolute value of
the coherent input amplitude, which is due to the inter-
ference of the incoming fields at the beam splitter. As
expected, for n<m the probability P (n,m) goes to zero
as the coherent amplitude does.
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Fig. 2. The probability of producing (n = 2, m = 3) PSJP
coherent states (dashed line) and (n=3, m=2) PAJP coherent
states (solid line) is shown as a function of |β| for two values
of the beam-splitter transmittance; (a) |T |2 = 0.4; (b) |T |2 =
0.81.

The superposition of photon-added coherent states,
equation (26), gives rise to strong quantum interference,
as it can be seen from the quadrature distribution

pn(x, ϕ|m) = |〈x, ϕ|Ψn,m〉|
2. (36)

Using the Fock-state expansions (27) and [33]

|x, ϕ〉 = (π)−1/4e−x
2/2

∞∑
k=0

eikϕ
√

2kk!
Hk(x)|k〉 (37)

[Hk(x), Hermite polynomial] of the states |Ψn,m〉 and
|x, ϕ〉, respectively, and recalling the identity [34]

∞∑
k=0

zk

k!
Hk+n(x) = exp

(
2xz − z2

)
Hn(x− z), (38)

we find that

pn(x, ϕ|m) =
|β′|−2ν

N ′n,m
√
π

× exp

{
−
[
x−
√

2|β′| cos(ϕ−ϕβ′)
]2}∣∣∣∣∣

n∑
k=µ

(−|R|2)k

×

(
n

k

) k∑
l=µ

(
k

l

)
(2−

1
2β′
∗
eiϕ)l

(l − ν)!
Hl

(
x−2−

1
2 β′
∗
eiϕ
) ∣∣∣∣∣

2

, (39)

where ϕβ′=ϕβ +ϕT . Examples of pn(x, ϕ|m) are plotted
in Figure 3 for β′= 2.07 and (a) n = 2, m = 3 [P (n,m) ≈
9.7%] and (b) n = 3, m = 2 [P (n,m) ≈ 6.7%]. From
the figure it is clearly seen that the states are extremely
non-Gaussian squeezed coherent states owing to quantum
interference.

(a)

x

0

0:5

1

1:5

2

2:5

3

�5
0

5

0:2

0:4

0:6

'

pn(x; 'jm)

(b)

x

0

0:5

1

1:5

2

2:5

3

�5
0

5

0:2

0:4

0:6

'

pn(x; 'jm)

Fig. 3. The quadrature-component distributions of (a) PSJP
and (b) PAJP coherent states for β′ = 2.07 (|β|= 2.3, |T |2 =
0.81); (a) n= 2, m= 3; (b) n= 3, m= 2.

Next let us consider the Husimi function

Qn(x, p|m) =
1

2π
|〈α|Ψn,m〉|

2, (40)

with |α〉 being a coherent state and α = 2−1/2(x+ ip).
Expanding |α〉 and |Ψn,m〉 in the Fock basis, on applying
equations (23, 27) respectively, we derive

Qn(x, p|m) =
exp
[
−|α−β′|2

]
2π|β′|2νN ′n,m

×

∣∣∣∣∣∣
n∑
k=µ

(−|R|2)k
(
n

k

) k∑
l=µ

(
k

l

)
(αβ′

∗
)l

(l−ν)!

∣∣∣∣∣∣
2

. (41)
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We again use the relations (28, 29) and rewrite equation
(41) as

(a)

0

2

4
�3

0

3

0:04

0:08

0:12

x

p

Qn(x; pjm)

(b)

6

0

2

4

�3

0

3

0:02

0:04

0:06

x

p

Qn(x; pjm)

Fig. 4. The Husimi function of (a) PSJP and (b) PAJP co-
herent states for β′= 2.07 (|β|= 2.3, |T |2 = 0.81); (a) n= 2, m
= 3; (b) n= 3, m= 2.

Qn(x, p|m) =
|T |4n(n!)2

2πN ′n,m|β
′|2ν

(−|RTαβ′|)2µ

(n+ δ)!

× e−|α−β
′|2
∣∣∣∣L|ν|n−µ( |R|2αβ′∗|T |2

)∣∣∣∣2. (42)

Figure 4 shows plots of the Husimi function for β′ = 2.07
and (a) n= 2, m= 3 and (b) n= 3, m= 2.

As already mentioned, the PSJP and PAJP coherent
states are highly nonclassical states in general. Following
the standard definition [35], a classical state is one whose
P function is non-negative definite and no more singular
than a δ function. From this definition it can be shown
that any pure state |Ψ〉 which is not a Glauber coherent
state |α〉 is nonclassical [36], so that a measure of the
minimum distance between |Ψ〉 and |α〉 is a measure of
nonclassicality [37]. Using the distance measure [38]

d =
√

Tr(|Ψ〉〈Ψ | − |α〉〈α|)2 =
√

2[1− 2πQ(x, p)] , (43)

it is seen that the minimum distance is proportional to the
square root of the difference between 1/(2π)≈0.16 (height
of the coherent-stateQ function) and the maximum height
of the Q function of the state |Ψ〉. From Figures 4a and 4b
we see that the PSJP coherent state (n<m) is more clas-
sical than the PAJP coherent state (n>m) – a behaviour
that is observed for a wide range of values of |β′|.

Among the phase-space functions that have been
shown to be inferable from measurable data, the Wigner
function

Wn(x, p|m) =
1

π

+∞∫
−∞

dy e2ipy〈x−y|Ψn,m〉〈Ψn,m|x+y〉 (44)

(|x〉=|x, ϕ〉|ϕ=0) reflects quantum features most distinctly.
Since the only positive Wigner function for a pure state
is a Gaussian (see [39] and references therein), negative
values of the Wigner function indicate nonclassical, non-
Gaussian states. In order to calculate the Wigner function,
we again use the Fock-state expansions (27, 37) (together
with Eq. (38)). After some calculation we derive

Wn(x, p|m) =
e
−

[
x2+

1
2 (β′+β′∗)

2
−
√

2x(β′+β′∗)

]
πN ′n,m|β

′|2ν

×
n∑
k=µ

n∑
j=µ

(−|R|2)k+j

(
n

k

)(
n

j

) k∑
l=µ

j∑
l′=µ

(
k

l

)(
j

l′

)

×
(2−1/2β′)l(2−1/2β′

∗
)l
′

(l − ν)!(l′ − ν)!

+∞∫
−∞

dy e−y
2+y[2ip+

√
2(β′∗−β′)]

×Hl(x−y−2−1/2β′)Hl′(x+y−2−1/2β′
∗
). (45)

We then use the integral identity [34]

+∞∫
−∞

dx e−x
2

Hm(x+a)Hn(x+b)

=

√
π2nm!

bm−n
Ln−mm (−2ab) (m ≤ n), (46)

and perform the y-integration to obtain

Wn(x, p|m) =
e−|x+ip−

√
2β′|2

|β′|2νπN ′n,m

n∑
k=µ

n∑
j=µ

{
(−|R|2)k+j

×

(
n

k

)(
n

j

) k∑
l=µ

j∑
l′=µ

(
k

l

)(
j

l′

)
(β′)l(β′∗)l

′

(l − ν))!(l′ − ν)!

×χ(3)
l′,l

[√
2(x+ip−2−1/2β′)

]}
, (47)

where

χ
(3)
l,k (α) =

{
(−1)kk!αl−kLl−kk (|α|2) for l ≥ k,

(−1)ll!(α∗)k−lLk−ll (|α|2) for l < k.
(48)

In Figure 5 plots of the Wigner function Wn(x, p|m) are
shown for β′=2.07 and (a) n=2, m=3 and (b) n=3, m=
2. We see that Wn(x, p|m) for n> m is more structurized
owing to quantum interference and stronger negative than
for n< m, which corresponds to the above mentioned fact
that the PAJP coherent state is more nonclassical than
the PSJP coherent state.
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Fig. 5. The Wigner function of (a) PSJP and (b) PAJP co-
herent states for β′= 2.07 (|β|= 2.3, |T |2 = 0.81); (a) n= 2, m
= 3; (b) n= 3, m= 2).

5 PSJP and PAJP squeezed vacuum states

Let us briefly comment on PSJP and PAJP squeezed vac-
uum states that are realized when the input state is a
squeezed vacuum Ŝ(ξ)|0〉, with Ŝ(ξ) = exp{− 1

2 [ξ(â†)2 −
ξ∗â2]} being the squeeze operator. Hence we may write

|Φ〉 ≡ Ŝ(ξ)|0〉 = (1− |κ|2)
1
4

∞∑
k=0

[(2k)!]1/2

2kk!
κk|2k〉, (49)

where the notation κ≡ κ(ξ) =−eiϕξ tanh |ξ| has been in-
troduced (ξ = |ξ|eiϕξ). According to equation (16), the
conditional output states are then given by

|Ψn,m〉 =
1√
N ′n,m

n∑
k=µ

(−|R|2)k

(k − ν)!

(
n

k

)
âk−ν(â†)kŜ(ξ′)|0〉,

(50)
with N ′n,m = [(1 − |κ′|2)/(1 − |κ|2)]1/2Nn,m [ξ′ =

|ξ′|ei(ϕξ+2ϕT ), and tanh |ξ′|= |T |2 tanh |ξ|]. In the photon-
number basis |Ψn,m〉 reads as

|Ψn,m〉 =
(1− |κ′|2)

1
4√

N ′n,m

n∑
k=µ

(−|R|2)k

(k − ν)!

(
n

k

)

×
∞∑
p=µ

(p− ν + k)!1
2 [1+(−1)p−ν]

Γ
[

1
2 (p−ν)+1

]√
p!

(
1
2κ
′
)(p−ν)/2

|p〉, (51)

with κ′=T 2κ. From equation (51) we easily see that when
the difference between the number n of photons in the
second input channel of the beam splitter and the num-
ber m of photons detected in the second output channel,
i.e., the parameter ν = n − m, is even (odd), then the
mode in the first output channel is prepared in a PSJP
or PAJP squeezed vacuum state |Ψn,m〉 that contains only
Fock states with even (odd) numbers of photons. Sim-
ilarly to ordinary photon-subtracted and photon-added
squeezed vacuum states [19,20], it can be shown that the
PSJP and PAJP squeezed vacuum states are Schrödinger-
cat-like states. In particular, from equation (51) it can be
found that |Ψn,m〉 can be given by a superposition of two
mesoscopically distinguishable states,

|Ψn,m〉 ∼ |Ψ
(+)
n,m〉+ |Ψ (−)

n,m〉, (52)

where

|Ψ (±)
n,m〉 =

1√
N ′(±)
n,m

∞∑
p=µ

C(±)
n,m,p(κ

′) |p〉, (53)

with

C(±)
n,m,p(κ

′) =
n∑
k=µ

(−|R|2)k

(k − ν)!

(
n

k

)

×
(p− ν + k)!

Γ
[

1
2 (p−ν)+1

]√
p!

(
±
√

1
2κ
′

)p−ν
. (54)

A detailed analysis can be given in a way similar to that
in [19,20]. We therefore renounce the somewhat lengthy
calculations here.

6 Relations to other states

From equation (21) and the relation

P
(α,β)
l (1) = (−1)lP

(α,β)
l (−1) =

(
l+α

l

)
(55)

we see that for sufficiently small values of |T | (|T | → 0)
or values of |T | close to unity (|T | → 1) equation (21)
approximately reduces to

|Ψn,m〉 ∼

 â|ν|T n̂|Φ〉 for ν = n−m < 0,

(â†)νT n̂|Φ〉 for ν = n−m > 0.
(56)

As expected, in these limiting cases the produced condi-
tional states |Ψn,m〉 reduce to ordinary photon-subtracted
(ν < 0) or photon-added (ν > 0) states.

Equation (21) reveals that for n= 0 and m> 0 usual
photon subtraction is observed,

|Ψ0,m〉 = (1/m!)N−1/2
0,m âmT n̂|Φ〉, (57)

independently of the value of T . In the opposite case, i.e.
n> 0 and m= 0, an ordinary photon-added state is pro-
duced,

|Ψn,0〉 = (−|R|2)nN−1/2
n,0 (â†)n T n̂|Φ〉. (58)

Photon-subtracted states and photon-added states of the
type given in equations (57, 58), respectively, have been
studied by several authors [15–22].
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6.1 Displaced Fock states

Since the coherent states |β〉= D̂(β)|0〉 [D̂(β)=exp(βâ†−
β∗â)] are the eigenstates of the destruction operator â, it
is obvious that subtracting photons from a coherent state
yields again a coherent state. From

(â†)n|β〉 = (â†)nD̂(β)|0〉

= D̂(β)D̂†(β)(â†)nD̂(β)|0〉, (59)

it is seen that photon-added coherent states are finite su-
perpositions of displaced Fock states D̂(β)|n〉 [15],

(â†)n|β〉 = D̂(β)(â† + β∗)n|0〉

=
n∑
k=0

(
n

k

)√
k! (β∗)n−kD̂(β)|k〉. (60)

Further, from equations (26, 30) we know that PSJP and
PAJP coherent states can be given by finite superpositions
of photon-added coherent states. Expressing the latter,
according to equations (59, 60), in terms of displaced Fock
states, we find that PSJP and PAJP states are also finite
superpositions of displaced Fock states.

Similarly, displaced Fock states can be given by finite
superpositions of photon-added coherent states. To show
this, we write

D̂(β)|n〉 = D̂(β)
1
√
n!

(â†)n|0〉

=
1
√
n!
D̂(β)(â†)nD̂†(β)D̂(β)|0〉, (61)

and hence

D̂(β)|n〉 =
1
√
n!

(â† − β∗)n|β〉

=
1
√
n!

n∑
l=0

(
n

l

)
(−β∗)n−l(â†)l|β〉. (62)

Note that from equation (62) and equation (30) for |T |2 =

|R|2=0.5 and β≈1 it follows that |Ψ11〉∼D̂(β)|n〉|n=1, i.e.,
the conditional measurement schemes realizes a coherently
displaced single-photon Fock state.

6.2 Near-photon-number eigenstates

Near-photon-number eigenstates are an example of mini-
mum uncertainty states that are defined by the eigenstates
of the operator Ŷ = n̂− i|β|x̂(ϕ), which is associated with
the “simultaneous” measurement of photon number and
quadrature components [4]. The states are also called cres-
cent states and have been studied in a number of papers
[4–9]. In particular, they can be expressed in the form of

|ψ〉 ∼ (â† + β∗)n|β〉, (63)

or alternatively, in terms of nonunitarily shifted Fock
states, and it was shown that they can be generated by

D

j�i j i

BS1 BS2

j�Li

(ây)njT�i

jni

Fig. 6. Experimental setup for preparing near-photon-number
states (crescent states). A mode prepared in a coherent state
|α〉 is first mixed (beam splitter BS1) with a mode prepared
in a Fock state |n〉 and a zero-photon output measurement
is performed (detector D). The output mode prepared in a
photon-added coherent state ∼ (â†)n|2β〉 (2β = Tα) is then
mixed (beam splitter BS2 with transmittance T̃ close to unity)
with a mode prepared in a strong coherent state |αL〉 such that
β=−(R̃/T̃ )αL.

state reduction via photon-number conditional measure-
ment in nondegenerate parametric down conversion [5].

From equation (63) it is easily seen that

|ψ〉 ∼ D̂†(β)(â†)nD̂(β)|β〉 = D̂(−β)(â†)n|2β〉, (64)

which reveals that near-photon-number eigenstates are
coherently displaced photon-added coherent states. This
offers the possibility of producing them by conditional
measurement on a beam splitter and subsequent coherent
displacement, as it is depicted in Figure 6.

6.3 Squeezed Fock states

Next let us consider a photon-added squeezed vacuum
state,

(â†)nŜ(ξ)|0〉 = Ŝ(ξ)Ŝ†(ξ)(â†)nŜ(ξ)|0〉

= (1− |κ|2)−n/2Ŝ(ξ)(â† + κ∗â)n|0〉. (65)

Using standard ordering techniques for boson operators
[33], we derive

(â† + εâ)n =
n∑
l=0

(
n

l

)
(ε)n−l

×

[ l2 ]∑
k=0

(2ε)k
√
π

(
l

2k

)
Γ
(
k + 1

2

)
(â†)l−2kân−l, (66)

which enables us to rewrite equation (65) as

(â†)nŜ(ξ)|0〉 = (1− |κ|2)−n/2

×

[n2 ]∑
k=0

n!(κ∗)k

2kk!
√

(n−2k)!
Ŝ(ξ)|n− 2k〉. (67)
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Fig. 7. Experimental setup for preparing squeezed-state excitations. A mode prepared in a squeezed vacuum state Ŝ(ζ)|0〉 is
first mixed (beam splitter BS1) with a mode prepared in a Fock state |n〉 and a zero-photon output measurement is performed

(detector D), so that the output mode is prepared in a photon-added squeezed vacuum state ∼ (â†)nŜ(2ξ)|0〉 [κ(2ξ) =T 2κ(ζ)],
which is then squeezed, e.g., by a degenerate parametric amplifier (DPA) to realize the squeezing parameter −ξ. Finally the
so squeezed output mode is mixed (beam splitter BS2 with transmittance T̃ close to unity) with a mode prepared in a strong
coherent state |αL〉 such that β= (R̃/T̃ )αL.

Analogously, for the photon-subtracted squeezed vacuum
states we find that

âmŜ(ξ)|0〉 = Ŝ(ξ)Ŝ†(ξ)âmŜ(ξ)|0〉

= κ(1− |κ|2)−m/2Ŝ(ξ)(â† + κ−1â)m|0〉 , (68)

and hence

âmŜ(ξ)|0〉 = κ(1− |κ|2)−m/2

×

[m2 ]∑
k=0

m! (1/κ)
k

2kk!
√

(m− 2k)!
Ŝ(ξ)|m− 2k〉. (69)

Equations (67, 69) show that photon-added and photon-
subtracted squeezed vacuum states can be given by finite
superpositions of squeezed Fock states Ŝ(ξ)|k〉, and it is
worth noting that the two classes of states realize two
classes of Schrödinger-cat-like states [19,22]. The exten-
sion of equations (67, 69) to photon-added squeezed co-

herent states ∼ (â†)nD̂(β)Ŝ(ξ)|0〉 and photon-subtracted

squeezed coherent states ∼ âmD̂(β)Ŝ(ξ)|0〉 is straight-
forward. These two classes of states can be given by
finite superpositions of displaced squeezed Fock states
D̂(β)Ŝ(ξ)|k〉.

Displaced squeezed Fock states D̂(β)Ŝ(ξ)|n〉 can be
rewritten as

D̂(β)Ŝ(ξ)|n〉 = (n!)−1/2D̂(β)Ŝ(ξ)(â†)n|0〉

= (n!)−1/2D̂(β)Ŝ(ξ)(â†)nŜ†(ξ)Ŝ(ξ)|0〉

= [(1− |κ|2)nn!]−1/2D̂(β)(â† − κ∗â)nŜ(ξ)|0〉. (70)

From equations (70, 66) it is seen that displaced squeezed
Fock states cannot be given by finite superpositions of
photon-added squeezed states in general. Note that the
displaced Fock states D̂(β)|k〉 are finite superpositions of
photon-added coherent states (see Eq. (62)).

6.4 Squeezed-state excitations

Squeezed-state excitations

|β, n; ξ〉 ∼ D̂(β)(â† + κ∗â)nŜ(ξ)|0〉 (71)

were introduced for diagonalizing the complete Gaussian
class of phase-space functions [12]. Note that although
equation (71) formally resembles equation (70), squeezed-
state excitations are quite different from displaced squee-
zed Fock states in general. It can be easily seen that

|β, n; ξ〉 ∼ D̂(β)Ŝ†(ξ)Ŝ(ξ)(â† + κ∗â)nŜ†(ξ)Ŝ(2ξ)|0〉

∼ D̂(β)Ŝ(−ξ)(â†)nŜ(2ξ)|0〉 (72)

(cf. Eq. (65)). We see that squeezed-state excitations are
nothing but squeezed and subsequently displaced photon-
added squeezed vacuum states, which implies the scheme
in Figure 7 for producing them.

7 Experimental considerations

Let us first address the problem of realistic photon detec-
tion. Unfortunately, there are no highly efficient and pre-
cisely discriminating photodetectors available at present.
To overcome this difficulty, photon chopping [40] was sug-
gested for measuring the photon-number statistics. Let us
remember that in such a scheme the mode to be detected
is fed into an input channel of an optical 2N -port array of
beam splitters, the other N − 1 input ports being unused.
Highly efficient avalanche photodiodes in the N output
channels are used in order to record the coincidence event
statistics. Since they only distinguish between photons be-
ing present or absent, the probability of obtaining k clicks
when m photon are present is given by [40]

P̃N,η(k|m) =
∑
l

P̃N (k|l)Ml,m(η) (73)
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(η is the detection efficiency), where

P̃N (k|m) =
1

Nm

(
N

k

) k∑
l=0

(−1)l
(
k

l

)
(k − l)m (74)

for k≤m, and P̃N (k|m) = 0 for k >m. The matrix

Ml,m(η) =

(
m

l

)
ηl(1− η)m−l (75)

for l≤m, and Ml,m(η) = 0 for l >m represents the effect
of nonperfect detection. Since detection of k coincident
events can result from various numbers m of photons, the
conditional state is in general a statistical mixture. There-
fore in place of equation (15) we now have

%̂out(n, k) =
∑
m,Φ

p̃ΦPN,η(n,m|k) |Ψn,m〉〈Ψn,m|, (76)

where |Ψn,m〉 is given in equation (16), and PN,η(n,m|k) is
the probability of m photons being present under the con-
dition that k coincidences are recorded. The conditional
probability PN,η(n,m|k) can be obtained using the Bayes
rule as

PN,η(n,m|k) =
1

P̃N,η(n, k)
P̃N,η(k|m) P (n,m). (77)

Here P (n,m) is the prior probability (12) ofm photons be-

ing present, and accordingly, P̃N,η(n, k) is the prior prob-
ability of recording k coincident events,

P̃N,η(n, k) =
∑
m

P̃N,η(k|m) P (n,m). (78)

Second, preparation of the reference mode in a Fock state
is a nontrivial problem (for a review, see [1]; for single-
photon Fock states, see also [41]; for multiphoton Fock
states, see also [42,43]). In particular, a method for syn-
thesizing multiphoton Fock states from single-photon Fock
states (produced, e.g., in parametric down conversion) has
been proposed [43]. In the scheme, modes prepared in
single-photon Fock states are fed into the input ports of
an array of beam splitters and detectors survey all but one
output port so that the mode in the free output port is
prepared in the sought photon-number state. In practice
however, it may be more realistic to consider statistical
mixtures of photon-number states rather than pure Fock
states. Let us return to equation (9) and assume that

%̂in = %̂in1 ⊗ %̂in2, (79)

where
%̂in2 =

∑
n

p̃n |n〉〈n| . (80)

To be more specific, let us consider (as an example of a
sub-Poissonian distribution) a binomial probability distri-
bution,

p̃n =

(
n0

n

)
pn(1− p)n0−n if n ≤ n0 (81)
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Fig. 8. The quadrature-component distribution (a) and the
Wigner function (b) of a mixed conditional output state (82)
for a coherent input state with β′=2.07 (|β|=2.3, |T |2 =0.81).
The parameters of the photon-chopping detection scheme are k
=4, N=20, η=90% and those of the input Fock-state mixture
(80) are n0 = 4 and p= 0.95.

and p̃n = 0 elsewhere (0 < p < 1). Note that for p→ 0,
n0→∞, and pn0 finite the binomial distribution (81)
reduces to a Poisson distribution, with n̄ = pn0 being
the mean photon number. Using equations (79, 80), from
equation (76) we easily find that after recording k coinci-
dent events the conditional mixed state now reads

%̂out1(k) =
∑
n

p̃n %̂out1(n, k)

=
∑
n,m,Φ

p̃np̃Φ PN,η(n,m|k)|Ψn,m〉
〈
Ψn,m|. (82)

Accordingly, the probability of detecting the state is the
average of PN,η(n, k) given in equation (78), i.e.,

PN,η(k) =
∑
n

p̃nPN,η(n, k) (83)

=
∑
n,m

p̃nP̃N,η(k|m)P (n,m). (84)

The quadrature-component distributions and the Wigner
function of a mixed conditional output state (82) are plot-
ted in Figure 8 [PN,η(k)≈ 21.4%]. We see that the quan-
tum interference is still preserved for realistic values of the
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number of photodiodes and efficiencies (k = 4, N = 20, η
= 90%) and for a sub-Poissonian statistics of the input

Fock-state mixture (80) [n̄= 3.8, (∆n)2 = 0.19].

8 Summary and conclusions

We have extended previous work on quantum-state prepa-
ration via conditional output measurement on a beam
splitter and shown that when a mode prepared in a state
|Φ〉 is mixed with a mode prepared in an n-photon Fock
state and m photons are detected in one of the output
channels of the beam splitter, then the mode in the other
output channel is prepared in a photon-subtracted (n<m)
or a photon-added (n>m) Jacobi polynomial state which
is obtained by applying an operator-valued Jacobi polyno-
mial to the state |Ψ〉∼ T n̂|Φ〉. Since for typical classes of
input states, such as thermal states, coherent states and
squeezed states, the states |Φ〉 and |Ψ〉 belong to the same
class of states, they give rise to the same class of Jacobi
polynomial states. Jacobi polynomial states are nonclassi-
cal states in general, so that subtracting photons from or
adding photons to them again yields nonclassical states in
general.

The analysis has shown that PSJP and PAJP coher-
ent states can be regarded as extremely non-Gaussian
squeezed states. A characteristic feature of PSJP and
PAJP squeezed vacuum states are the quantum inter-
ferences associated with the quadrature-component noise
reduction. Moreover, PSJP and PAJP squeezed vac-
uum states are Schrödinger-cat-like states. Photon-added
Jacobi polynomial states are more nonclassical than pho-
ton-subtracted Jacobi polynomial states in general. In par-
ticular when n= 0 (m> 0) or m= 0 (n> 0), respectively,
then the states reduce to ordinary photon-subtracted or
photon-added states. Whereas photon-added coherent sta-
tes are non-Gaussian squeezed states, subtracting pho-
tons from a coherent state obviously leaves the state un-
changed.

The analysis has further shown that there are close
relations to other nonclassical states that have widely
been studied. Hence combining state preparation via con-
ditional output measurement on a beam splitter with
other schemes offers novel possibilities of nonclassical-
state generation and manipulation, such as the generation
of near-photon-number eigenstates and squeezed-state
excitations. Since near-photon-number eigenstates are co-
herently displaced photon-added coherent states, they can
be generated by combining the scheme for photon adding
with a scheme for coherently displacing a state. The lat-
ter can be realized by using a second beam splitter whose
transmittance is close to unity and which mixes the mode
prepared in a photon-added coherent state with a mode
prepared in a strong coherent state. Similarly, a squeezed-
state excitation can be prepared by appropriately squeez-
ing a photon-added squeezed vacuum state followed by a
coherent displacement of the state.

In order to demonstrate the feasibility of generating
PSJP and PAJP states, we have calculated the corre-
sponding event probabilities. Further, we have also al-
lowed for both nonprecise input Fock-state preparation

and nonprecise output photon counting. For this purpose
we have considered sub-Poissonian mixtures of Fock states
in place of pure Fock states and assumed that photon-
chopping is adopted for photon counting.

This work was supported by the Deutsche Forschungsgemein-
schaft. We are grateful to E. Schmidt and M.G.A. Paris for
valuable discussions.

Appendix A: Proof of equation (21)

To prove equation (21), let us consider the operator func-
tion

Fµl (n̂, |ν|;T ) = T n̂
l∑

k=0

(−|R|2)kk!

(k+|ν|)!

(
l

k

)(
n̂+µ+k

k

)
,

(A.1)
which reads in the Fock basis as

Fµl (n̂, |ν|;T ) =
∞∑
n=0

Tn

(n+µ)!

×
l∑

k=0

Γ (n+µ+k+1)(−|R|2)k

Γ (k+|ν|+1)

(
l

k

)
|n〉〈n|. (A.2)

Introducing the integral representation of the gamma
function Γ (n+µ+ k+ 1), we have

Fµl (n̂, |ν|;T ) =
∞∑
n=0

Tn

(n+µ)!

∫ ∞
0

dt tn+µe−t

×
l∑

k=0

(−|R|2t)k

Γ (k+|ν|+1)

(
l

k

)
|n〉〈n|. (A.3)

We now use the sum rule (28) and the integral identity
[34]∫ ∞

0

dt tα−1e−tLβn(ct)

= Γ (α)P(β,α−β−n−1)
n (1− 2c) (Re α > 0) (A.4)

and obtain (|R|2 = 1− |T |2)

Fµl (n̂, |ν|;T )

=
l!

(l+|ν|)!

∞∑
n=0

P
(|ν|,n+µ−|ν|−l)
l

(
2|T |2−1

)
Tn|n〉〈n|

=
l!

(l+|ν|)!
P

(|ν|,n̂+µ−|ν|−l)
l

(
2|T |2 − 1

)
T n̂. (A.5)

Combining equations (18, 20, A.1, A.5) eventually yields
equation (21).

Appendix B: Photon statistics of PSJP and
PAJP coherent states

From equation (27) the photon-number distribution
pn,m(l) = |〈 l|Ψn,m〉|2 of PSJP and PAJP coherent states
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can be given by

pn,m(l) =
e−|β

′|2 l!|β′|2l

N ′n,m|β
′|2ν

∣∣∣∣∣
n∑
k=µ

(−|R|2)k
(
n

k

)

×
k∑
j=µ

(
k

j

)
θ(l − j)

(j−ν)!(l−j)!

∣∣∣∣∣
2

, (B.1)

where θ(n) = 1 for n≥ 0 and θ(n) = 0 elsewhere. Further,
from equations (24, 25) it can be shown that the anti-
normally ordered moments of the photon number can by
given by

〈Ψn,m|â
p(â†)p|Ψn,m〉 =

|β′|−2ν

N ′n,m

n∑
k=µ

n∑
j=µ

(−|R|2)k+j

×

(
n

k

)(
n

j

) k∑
l=µ

j∑
l′=µ

(
k

l

)(
j

l′

)
β′l(β′∗)l

′
χ

(1)
l′+p,l+p(β

′)

(l − ν))!(l′ − ν)!
, (B.2)

with χ
(1)
l,k (α) being defined in equation (32). Equation

(B.2) can then be used to derive closed solutions for the
normally ordered moments of the photon number. In par-
ticular, writing

〈n̂〉 = 〈Ψn,m|â
†â|Ψn,m〉 = 〈Ψn,m|ââ

†|Ψn,m〉 − 1 (B.3)

and applying equation (B.2), the mean number of photons
is calculated to be

〈n̂〉 =
|β′|−2ν

N ′n,m

n∑
k=µ

n∑
j=µ

(−|R|2)k+j

(
n

k

)(
n

j

)

×
k∑
l=µ

j∑
l′=µ

(
k

l

)(
j

l′

)
β′l(β′∗)l

′
χ

(1)
l′+1,l+1(β′)

(l − ν))!(l′ − ν)!
− 1. (B.4)

In a similar way, closed solutions can also be found for
higher-order moments. For example, in order to determine
the Mandel factor Q= (〈n̂2〉− 〈n̂〉2)/〈n̂〉−1, knowledge of
〈n̂2〉 is required. It can be obtained by introducing the
antinormally ordered form

〈n̂2〉 = 〈Ψn,m|(â
†â)2|Ψn,m〉

= 〈Ψn,m|â
2(â†)2|Ψn,m〉

−3〈Ψn,m|ââ
†|Ψn,m〉+ 1, (B.5)

and then applying equation (B.2).

Appendix C: Derivation of equation (34)

According to equation (12), the probability of producing
PSJP and PAJP coherent states is given by

P (n,m) = e−|β|
2 |R|−2νn!

|T |2mm!

×
n∑
k=µ

n∑
j=µ

(−|R|2)k+j

(
m

k−ν

)(
m

j−ν

)
χ

(2)
i,j (β′, ν), (C.1)

where

χ
(2)
k,j(β

′, ν) =
∞∑
p=δ

(
p+k

k

)(
p+j

j

)
|β′|2p

(p+ν)!
, (C.2)

which for ν≥ 0 (i.e., µ= ν and δ= 0) can be rewritten as

χ
(2)
k,j(β

′, ν) =
1

k!ν!

×
∂k

∂(|β′|2)k
|β′|2k

{
ν!

j!

∞∑
n=0

Γ (n+j+1)

Γ (n+ν+1)

|β′|2n

n!

}
. (C.3)

The term in the curly brackets is nothing but the series
expansion of the confluent hypergeometric function. We
therefore have

χ
(2)
k,j(β

′, ν) =
1

k!ν!

∂k

∂(|β′|2)k
|β′|2kΦ(j + 1, ν + 1, |β′|2).

(C.4)
Using the relations [34]

Φ(a, b, z) = ezΦ(b− a, b,−z),

Φ(−n, b+ 1, z) =
n!Γ (b+ 1)

Γ (n+b+1)
Lbn(z), (C.5)

we then obtain

χ
(2)
k,j(β

′, ν) =
(j−ν)!

k!j!

∂k

∂(|β′|2)k
|β′|2ke|β

′|2Lνj−ν(−|β′|2)

=
(j−ν)!

j!

k∑
l=0

(
k

l

)
|β′|2l

l!

∂l

∂(|β′|2)l
e|β
′|2Lνj−ν(−|β′|2). (C.6)

The form (35) of χ
(2)
k,j(β

′, ν) used in equation (34) follows
by applying standard formulas for derivatives of Laguerre
polynomials [34].

For ν < 0 (i.e., µ= 0 and δ =−ν) equation (C.2) can
be rewritten as

χ
(2)
k,j(β

′, ν)
∞∑
n=0

(
n−ν+k

k

)(
n−ν+j

j

)
|β′|2(n−ν)

n!

=
1

k!

∂k

∂(|β′|2)k
|β′|2(k−ν)

∞∑
n=0

(
n−ν+j

j

)
|β′|2n

n!
· (C.7)

Using the relations [34]

Ll−νj (0) =

(
n−ν+j

j

)
,

∞∑
n=0

Ln+b
j (x)

zn

n!
= ezLbj(x−z), (C.8)

we find that

χ
(2)
k,j(β

′, ν) =
1

k!

∂k

∂(|β′|2)k
|β′|2(k−ν)e|β

′|2L−νj (−|β′|2)

=
k∑
l=0

(
k

l

)
|β′|2l

l!

∂l

∂(|β′|2)l
|β′|−2νe|β

′|2L−νj (−|β′|2). (C.9)

By again applying standard formulas for derivatives of the
Laguerre polynomials [34] equation (C.9) takes the form
used in equation (35).
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40. H. Paul , P. Törmä, T. Kiss, I. Jex, Phys. Rev. Lett. 76,

2464 (1996).
41. C.K. Hong, L. Mandel, Phys. Rev. Lett. 56, 58 (1986);

A. Aspect, P. Grangier, in International trends in optics,
edited by J.H. Goodman (Academic Press, 1991), p. 247.

42. S.Ya. Kilin, D.B. Horoshko, Phys. Rev. Lett. 74, 5206
(1996); C.K. Law, H.J. Kimble, J. Mod. Optics 44, 2067
(1997); A. Napoli, A. Messina, J. Mod. Optics 44, 2093
(1997).

43. O. Steuernagel, Opt. Comm. 138, 71 (1997); M.G.A.
Paris, Int. J. Mod. Phys. B 11, 1913 (1997).


